服务热线:
86-0755-23229824
您当前所在位置:首页>>光学知识
联系我们

电话:86-0755-23229824

手机:18948346937 / 13510373651

邮箱:info@lisenoptics.com

地址:深圳市宝安区沙井街道后亭茅洲山工业园工业大厦全至科技创新园科创大厦11层C

微信:

立即沟通
光谱成像技术在海域目标探测中的应用
<p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">在现代战争中,信息对抗已经成为决定战争胜负的关键,而基于航空平台获取军事信息具有时效性强,侦查范围广等特点,是重要的侦察手段之一。在诸多航空平台的信息获取技术中,高光谱成像技术可在获取目标二维图像信息的基础上,同时获取目标的一维光谱信息,能够反映出被观测对象的外形影像以及理化特征,从而达到对目标的探测与识别。利用高光谱成像技术对地、对海进行侦察将获取更丰富的目标信息,极大地提高了航空侦察能力,相对于其他侦察方式具有一定的优越性。</span></p><p style="margin: 0pt; text-align: center; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt; mso-ascii-font-family: Calibri; mso-hansi-font-family: Calibri;">&nbsp;<img title="1621908234996783.png" alt="图片1.png" src="/uploads/image/20210525/1621908234996783.png"/></span></p><p style="margin: 0pt; text-align: left; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">一、基于高光谱技术的海面目标探测</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">高光谱数据具有多通道、谱段窄、准确度高、信息量大等特点,与单一波段的目标识别方式相比具有较大优势],因此被广泛应用于海面军事目标探测的研究中,主要包括海岛伪装军事目标的探测、海面舰船目标探测、导弹预警等。</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0);"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt; mso-ascii-font-family: Calibri; mso-hansi-font-family: Calibri;">①</span><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">、基于高光谱数据海面目标探测的物理基础</span></span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">高光谱数据具有图谱合一的特点,因此在提取舰船目标时,可以同时利用图像特征及光谱特征进行目标信息的提取。随着技术的进步,高光谱设备的几何分辨率及光谱分辨率不断提升。</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">&nbsp;</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0);"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt; mso-ascii-font-family: Calibri; mso-hansi-font-family: Calibri;">②</span><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">、基于高光谱数据目标检测算法的研究进展</span></span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">利用高光谱数据进行目标检测时,主要存在以下三个方面的优势</span>: <span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">一是利用光谱特征进行目标检测,对所获取的图像空间分辨率要求不高;二是高光谱数据具有丰富的光谱信息,可以有效辨别目标真伪;三是基于光谱特性,可以有效地从复杂背景中凸显出探测目标</span></span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">&nbsp;</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">二、基于高光谱技术的水下目标探测</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">水下目标以其极强的隐蔽性,对船舶的航行安全造成了重大威胁,其中,潜艇作为海军实施战略战术的杀手锏,已经成为各国的重要军事装备。</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">声纳是目前用于探测水下目标的常见工具,但是随着降噪技术的发展,水下目标产生的噪声越来越低,低速巡航时潜艇的噪声已经接近于海洋背景的噪声,因此利用声纳技术来探测水下军事目标变得愈加困难。</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">&nbsp;</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0);"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt; mso-ascii-font-family: Calibri; mso-hansi-font-family: Calibri;">①</span><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">、基于高光谱成像技术的水下目标探测现状</span></span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">基于高光谱成像技术的水下目标探测研究开始于上世纪</span>90 <span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">年代,研究主要集中在对接收到的潜艇反射光形成的高光谱图像进行分析,其探测结果依赖于反射光在水中的透射深度。</span></span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">&nbsp;</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0);"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt; mso-ascii-font-family: Calibri; mso-hansi-font-family: Calibri;">②</span><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">、基于潜艇热尾流目标探测现状及基于高光谱温度反演的目标探测方法探讨</span></span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">核潜艇航行过程中,海水冷却核装置排放出大量的温热尾流,而螺旋桨在运转过程中也会产生大量热流,热水质量较轻将上浮到海面,在海面形成连续或断续的轨迹,这些轨迹的特征与海水的性质相关。目前的研究工作主要集中在尾流中各干扰项的分布规律、尾流尺度的计算、尾流产生的机理等。</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">&nbsp;</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0);"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt; mso-ascii-font-family: Calibri; mso-hansi-font-family: Calibri;">③</span><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: 宋体; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">、基于潜艇光尾流的潜艇探测机理及基于线性解混的探测方法探讨</span></span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">潜艇在航行过程中会引起周围海域电磁场的变化,磁场的变化导致发光细菌发光强度发生改变,从而产生了生物光尾流。在正常条件下,这些细菌的发光强度恒定,而在外界电磁场的刺激下,其发光强度将增大。潜艇航行时,其周围的电磁辐射波动将使轨迹上的细菌发光强度发生变化从而留下明显的荧光带。由此可以通过传感器检测这些荧光信号来探测潜艇。</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">&nbsp;</span></p><p style="margin: 0pt; line-height: 150%;"><span style="color: rgb(0, 0, 0); line-height: 150%; font-family: Calibri; font-size: 11pt; mso-spacerun: &quot;yes&quot;; mso-fareast-font-family: 宋体; mso-bidi-font-family: &quot;Times New Roman&quot;; mso-font-kerning: 1.0000pt;">研究表明,用于海面军事目标探测的高光谱成像仪在光谱分辨率、谱段范围以及空间分辨率等方面的指标不断提升,并且在搭载于无人机平台的目标探测中表现优异。在基于高光谱数据的海面目标及水下目标探测中,研究人员提出了多种数据处理算法,处理后的图像目标与背景之间的差别显著增强,但实时处理的问题仍难以保证。</span></p><p></p>
Copyright © 2020 All Rights Reserved 莱森光学(深圳) 有限公司·版权所有 备案号:粤ICP备18141551号-1