服务热线:
86-0755-23229824
您当前所在位置:首页>>光学知识
3分钟了解VCSEL激光器

43年后,从光通信到消费电子,VCSEL火了
其实早在VCSEL面世之前,半导体激光器已经发展了很多年,其主要代表就是传统的边发射激光器。1977年,日本东京工业大学的伊贺健一教授首次提出了垂直腔面发射激光器这一概念,当时主要想通过缩短腔长来获得稳定输出的单纵模半导体激光器,但由于这种设计单程增益长度短,很难获得激光激射,因此VCSEL早期的研究十分缓慢。


两年后,伊贺健一教授使用液相外延技术成功实现了77 K温度下GaInAsP系列激光器脉冲激射。1988年采用有机化学气相沉积技术生长外延材料实现了室温条件下连续工作的GaAs系列VCSEL。随着外延技术的不断发展,能够制造出反射率极高的半导体DBR结构,这大大加快了VCSEL的研究进程。到20世纪末,在研究机构尝试不同结构以后,此时也基本确定了氧化限制型结构VCSEL的主流地位,其后,就进入了成熟及性能不断优化提高的阶段。


随着VCSEL商业化对各光通信领域的渗透,为了满足在各种场景下的应用,高速率、低功耗、宽工作温度范围成为光通信VCSEL优化发展的新方向[2]VCSEL 从诞生之日起就作为新一代光存储和光通信应用的核心器件,应用在光并行处理、光识别、光互联系统、光存储等领域,数据中心、超算中心等机架间连接常可以见到以VCSEL为光源的光模块。


当然除了最早涉足的光通信领域,VCSEL以其独特的结构特点在功耗、制造成本、集成、散热等方面的优势开始显现,也广泛应用于工业领域和消费电子领域,特别是自2017年苹果公司发布带有Face ID功能的iPhone X以来(其3D摄像头模组中主动红外投射点阵光源为结构光VCSEL),VCSEL在消费电子、安防、激光雷达等领域持续发力,到现在几乎成了各个领域近红外光学传感的宠儿。


工业和商业领域常见的应用有激光加工、医疗美容、环境监测、激光雷达、无人商店、智能门锁、安防摄像头、安防闸机等。消费电子领域包括激光鼠标、手机、平板电脑、无人机、扫地机器人、VR/AR、真无线蓝牙耳机、3D游戏机等等。


VCSEL的制造,不易
VCSEL结构一般由上、下布拉格反射镜(DBR)和中间有源区三部分组成,其典型的外延结构如图1所示从下到上依次是衬底、N型接触层、NDBR、量子阱有源区、PDBRP型接触层。

图片1.png


其中有源区为器件最重要的组成部分,由于VCSEL腔长极短,需要腔内有源介质对激射模式提供较大的增益补偿。

对于电流注入型VCSEL多采用多量子阱结构提高材料的微分增益。DBR反射镜一般由折射率不同且厚度为光波长的四分之一的两种材料交替生长而成,为了减小光学损耗,NDBR的反射率接近100%,可作为谐振腔的全反射镜,而PDBR反射率相对较低,可作为谐振腔的出射镜。其中PDBR中有一层或多层高铝组分AlGaAs层作为氧化限制层(图1中为双氧化层结构)。


采用多氧化层结构可以降低VCSEL器件的结电容,提高其调制带宽。横向电流和光场限制氧化孔径大小取决于器件整体性能设计,将影响器件阈值电流、峰值功率等关键参数。VCSELN/P型接触层用来制作N/P型欧姆电极,电流经过欧姆电极注入器件半导体材料。


VCSEL是半导体激光器的一种,其工作原理与其他半导体激光器本质上是相同的,只是在结构设计上有些许区别,比如在激光出射面上有别于边发射半导体激光器。


激光器就是利用半导体中的电子光跃迁引起光子受激发射而产生光振荡器和光放大器的总称,其产生激光同样要满足以下三个基本条件:
1)建立有源区内载流子的反转分布;
2)合适的谐振腔使受激辐射在其中得到多次反馈形成激光振荡;
3)提供足够强的电流注入使得光增益大于或者等于各种损耗之和,满足一定的电流阈值条件。


三个基本条件对应着VCSEL器件结构的设计理念。VCSEL的有源区使用应变量子阱结构,建立起实现内部载流子反转分布的基础,同时设计合适的反射率的谐振腔使辐射出的光子形成相干振荡,最后提供足够强的注入电流使得光子能够克服器件自身的各种损耗形成激射。


实际制造过程中使用金属有机物化学气相沉积(MOCVD)设备生长外延材料、生长外延结构过程中,以4寸半绝缘砷化镓作为外延衬底层,三甲基甲(TMGa)、三甲基铝(TMAl)、三甲基铟(TMIn)作为Ⅲ族源,砷烷(AsH3)作为Ⅴ族源,硅烷(SiH4)作为N型掺杂源,四溴化碳(CBr4)作为P型掺杂源。


外延生长过程中需要精确控制各层材料的生长温度、气体流量、时间等条件,使得生长的外延层结构和组分满足设计要求。外延生长结束后,经过一系列外延材料测试设备如光致荧光谱测试仪(PL)、X射线衍射仪(XRD)、原子力显微镜(AFM)、扩散浓度测试仪(ECV)等进行测试,外延片如果满足测试要求,那么就得到了合格的VCSEL外延片。


然后利用断点监控电感耦合等离子体刻蚀技术和精确湿法氧化控制技术等芯片制造技术,最后得到高速双台面同面电极结构VCSEL阵列芯片。随后再进行芯片解理、测试、分选、抽样老化及可靠性测试。



关键词相关链接: 紫外泄漏光谱辐射仪 紫外光谱辐射仪 薄膜测量光纤光谱仪 紫外增强宽带光源 水下辐射剖面光谱仪 水质光谱吸收模块 光辐射安全光谱仪 BTDF双向透射分布函数光谱测量仪 工业集成微型光纤光谱仪 可见红外双向反射光谱测量仪(BRDF) 电致发光量子效率光谱系统 光致发光量子效率光谱系统 水质测量光谱吸收光纤探头 IR孔透射积分球 显微透反射光谱系统 太阳模拟器均匀性和稳定性测试仪 荧光比色皿支架 中红外光谱辐射仪 辐射积分球 BRDF双向反射分布函数光谱测量仪 水质光谱紫外吸收模块 便携式矿物红外光谱仪 水体光谱仪 VCSEL激光LIV光谱功率测试仪 全光谱紫外吸收光谱水质模块 COD水质光谱吸收集成模块 全吸收积分球 厌氧停留吸收光谱 全自动水体表现光谱观测系统 VCSEL激光远场测试 VCSEL激光近场测试 单色积分球均匀光源 紫外吸收微型光谱仪 紫外增强卤灯光源 VCSEL激光测试仪 余弦辐射探头 水面高光谱辐射仪 VCSEL光学测试系统 水色遥感光谱仪 LIV激光功率测试 激光LIV人眼安全测试仪 光谱功率积分球 VCSEL激光安全功率测试仪 定制积分球 量子效率光谱系统 手持式地物光谱仪 VCSEL TOF测试 雾度积分球 紫外老化光谱辐射仪 中红外光源 光谱辐射仪 IR孔透过率光谱测试仪 便携式地物光谱仪 VCSEL激光LIV测试系统 地物光谱仪厂家 显微高光谱成像系统 积分球均匀光源 水质测量光谱仪 高光谱相机 机载成像高光谱 海面高光谱 透反射光谱测试仪 积分球光源系统 地物光谱仪 透射积分球 VCSEL激光测试 光通量测试积分球 多光谱相机 无人机高光谱 超连续白光光源 机载高光谱成像仪 紫外可见近红外光谱辐射仪 手持式LIBS激光诱导击穿光谱仪 COD双光路水质光谱吸收模块 水下光谱仪 无人机高光谱成像仪 水体高光谱辐射计 地物光谱仪价格 LIBS激光诱导击穿光谱系统 辐射测量光纤光谱仪 无人机高光谱成像系统 高低温温度控制器 高光谱成像仪 光谱反射率测量仪 光纤光谱仪 光纤镜头 反射积分球 成像光谱仪 激光波长测量光纤光谱仪 水质光谱传感器 激光功率积分球 便携式高光谱相机 积分球 FieldSpec 4 HR NG 蓝菲光学积分球 积分球生产厂家 LED积分球 光谱辐照度仪 便携式光谱辐射计 拉曼测量光纤光谱仪 HR-1024i 颜色测量光纤光谱仪 便携式光谱辐射仪 handheld 2 COD、叶绿素、总氮、总磷等多参数水质分析仪 光纤光源 氘卤组合光源 抗紫外光纤 漫反射标准板 LIBS headwall高光谱成像 国产地物光谱仪 便携式太阳光谱反射仪 野外地物光谱仪 角分辨率光谱系统 太阳光谱反射比 高光谱成像仪价格 地物波谱仪
Copyright © 2020 All Rights Reserved 莱森光学(深圳) 有限公司·版权所有 备案号:粤ICP备18141551号-1