服务热线:
86-0755-23229824
您当前所在位置:首页>>光学知识
基于可见近红外技术的棉花、地膜快速识别研究

在进行高光谱图像采集时,需要设置相机曝光时间,平台移动速度以及物镜之间的距离。这 3 个参数相互影响,图像调节的目的是使采集的图像大小合适,清晰,不变形失真。经过反复尝试,物镜高度设置为 31 cm,曝光时间设置为10ms,平台移动速度分别设置为 6.0 mm/s400-1000 nm)、16mm/s1000-2500 nm)。图像采集软件采用四川双利合谱科技有限公司提供的高光谱成像系统采集软件完成。图像处理采用 ENVI5.3 软件进行处理。在进行图像处理之前,先要对采集的光谱图像进行图像校正,图像校正公式如下:

 图片6.png (1)

式中,Rref 是校正过的图像,DNraw 是原始图像,DNwhite为白板校正图像,DNdark 是黑板校正图像。

1.  实验目标

高光谱成像设备采集的实验目标为棉花以及棉花中的各种地膜和异纤。实验目的是为了将混在棉花中的各种地膜和异纤识别出来,提高棉花的品质。

图片1.png 

需要高光谱设备采集的实验目标

 

2.  实验结果

2.1  可见、近红外技术识别棉花及地膜

2为棉花与各种不同地膜在400-1000nm波长范围内的光谱反射率曲线,从其反射率曲线来看,棉花的光谱反射率高,其他依次是异纤、地膜2、地膜4、地膜1或地膜3。棉花的光谱反射率与地膜1、地膜2、地膜4和异纤的光谱反射率变化趋势相似,地膜3400-550nm之间与棉花的光谱反射率相差较大。因此在光谱判别的过程中,棉花可能会存在错分为地膜1、地膜2、地膜4以及异纤的可能。图2下图为利用400-1000nm光谱范围对棉花、地膜和异纤的分类研究,从分类结果来看,边缘部分棉花被错分为地膜1,中间部分棉花有一些被错分为异纤,而地膜2、地膜3和地膜4有较好的区分度。

图片2.png 

2 棉花与各种地膜在400-1000nm的光谱及分类

 

光谱角度匹配(SAM)又称光谱角度填图法,即以实验室测量的标准光谱或从图像上提取的已知点的平均光谱为参考,求算图像中每个像元矢量(将像元n个波段的光谱响应作为n 维空间的矢量)与参考光谱矢量之间的广义夹角。本文从图像中选取已知棉花的光谱建立光谱数据库,用于快速辨别图像中的其他棉花,光谱匹配角度越小,则要求棉花之间的光谱差异越小,匹配的越精细,下图为根据不同的光谱匹配角得出的结论。从图中可知,光谱匹配角越小,匹配的结果越准确,然而会造成很多本是棉花的像元没有匹配上,造成棉花产量的下降;而光谱角越大,则会造成与棉花光谱相近的非棉花的地膜被判别为棉花,造成棉花品质的下降。

图片3.png 

3 不同光谱匹配角下棉花匹配结果(依次是0.030.050.070.10.15

 

2.2  短波红外技术识别棉花及地膜

4为棉花以及地膜在短波红外1000-2500nm波长范围内的光谱反射率曲线,从其反射率曲线来看,在短波红外范围内,棉花的光谱反射率曲线高于地膜及异纤的光谱反射曲线;从光谱曲线变化趋势来看,除了异纤的光谱反射曲线变化趋势与棉花的光谱反射曲线相似外,其他地膜的光谱反射曲线与棉花的光谱反射曲线相差较大;地膜2、地膜3和地膜41700nm2300nm附近有较为明显的吸收峰,而棉花则没有,因此可以除了根据反射率值的高低区分棉花和地膜外,也可以根据这两个吸收峰来辨别棉花和地膜;地膜1在短波红外范围内,其反射率值无显著变化,基本上是一条很水平的直线。图4下为利用1000-2500nm光谱范围对棉花、地膜以及异纤的分类研究,从分类结果来看,不同的地膜之间有很好的区分度,能较好地区分出不同的地膜,棉花的辨别除了少量异常点以及边缘的棉花可能受背景因素的干扰被错分为异纤外大部分棉花可以正常判别,达到了较为理想的判别效果,而异纤则不存在被错分为棉花。

图片4.png 

4棉花及地膜在1000-2500nm的光谱及分类

 

同样,我们运用光谱角匹配算法对图像、的棉花快速判别,下图为不同光谱匹配角下棉花的判别效果图(从左到右匹配角分别是0.040.080.1)。从判别效果来看,在匹配角为0.04的情况下存在少量的异纤被错分为棉花,但很多棉花却没有被判别出来;在匹配角是0.080.1的情况下,虽然大部分棉花被识别出来,但是更多的异纤则被错误的判为棉花。另外利用光谱角匹配算法判别棉花,四种不同的地膜没有被判别为棉花,这是因为这四种地膜在短波红外范围内,其光谱曲线变化趋势与棉花不同,但异纤的光谱曲线变化趋势与棉花相近,由此可见光谱匹配角比较适合于不同种类的目标物的判别,则光谱曲线变化趋势不能一致。

图片5.png 

5  不同光谱匹配角下棉花匹配结果(依次是0.040.080.1



关键词相关链接: 紫外泄漏光谱辐射仪 紫外光谱辐射仪 薄膜测量光纤光谱仪 紫外增强宽带光源 水下辐射剖面光谱仪 水质光谱吸收模块 光辐射安全光谱仪 BTDF双向透射分布函数光谱测量仪 工业集成微型光纤光谱仪 可见红外双向反射光谱测量仪(BRDF) 电致发光量子效率光谱系统 光致发光量子效率光谱系统 水质测量光谱吸收光纤探头 IR孔透射积分球 显微透反射光谱系统 太阳模拟器均匀性和稳定性测试仪 荧光比色皿支架 中红外光谱辐射仪 辐射积分球 BRDF双向反射分布函数光谱测量仪 水质光谱紫外吸收模块 便携式矿物红外光谱仪 水体光谱仪 VCSEL激光LIV光谱功率测试仪 全光谱紫外吸收光谱水质模块 COD水质光谱吸收集成模块 全吸收积分球 厌氧停留吸收光谱 全自动水体表现光谱观测系统 VCSEL激光远场测试 VCSEL激光近场测试 单色积分球均匀光源 紫外吸收微型光谱仪 紫外增强卤灯光源 VCSEL激光测试仪 余弦辐射探头 水面高光谱辐射仪 VCSEL光学测试系统 水色遥感光谱仪 LIV激光功率测试 激光LIV人眼安全测试仪 光谱功率积分球 VCSEL激光安全功率测试仪 定制积分球 量子效率光谱系统 手持式地物光谱仪 VCSEL TOF测试 雾度积分球 紫外老化光谱辐射仪 中红外光源 光谱辐射仪 IR孔透过率光谱测试仪 便携式地物光谱仪 VCSEL激光LIV测试系统 地物光谱仪厂家 显微高光谱成像系统 积分球均匀光源 水质测量光谱仪 高光谱相机 机载成像高光谱 海面高光谱 透反射光谱测试仪 积分球光源系统 地物光谱仪 透射积分球 VCSEL激光测试 光通量测试积分球 多光谱相机 无人机高光谱 超连续白光光源 机载高光谱成像仪 紫外可见近红外光谱辐射仪 手持式LIBS激光诱导击穿光谱仪 COD双光路水质光谱吸收模块 水下光谱仪 无人机高光谱成像仪 水体高光谱辐射计 地物光谱仪价格 LIBS激光诱导击穿光谱系统 辐射测量光纤光谱仪 无人机高光谱成像系统 高低温温度控制器 高光谱成像仪 光谱反射率测量仪 光纤光谱仪 光纤镜头 反射积分球 成像光谱仪 激光波长测量光纤光谱仪 水质光谱传感器 激光功率积分球 便携式高光谱相机 积分球 FieldSpec 4 HR NG 蓝菲光学积分球 积分球生产厂家 LED积分球 光谱辐照度仪 便携式光谱辐射计 拉曼测量光纤光谱仪 HR-1024i 颜色测量光纤光谱仪 便携式光谱辐射仪 handheld 2 COD、叶绿素、总氮、总磷等多参数水质分析仪 光纤光源 氘卤组合光源 抗紫外光纤 漫反射标准板 LIBS headwall高光谱成像 国产地物光谱仪 便携式太阳光谱反射仪 野外地物光谱仪 角分辨率光谱系统 太阳光谱反射比 高光谱成像仪价格 地物波谱仪
Copyright © 2020 All Rights Reserved 莱森光学(深圳) 有限公司·版权所有 备案号:粤ICP备18141551号-1