服务热线:
86-0755-23229824
您当前所在位置:首页>>光学知识
高光谱成像技术可以应用于红茶数字化拼配吗?

今天,小编将为大家介绍的是有关高光谱成像技术可以应用于红茶数字化拼配的知识点,大家请看详情:

image.png

红茶是中国传统出口茶类之一。拼配是红茶生产和经营中重要的工序,是保持产品质量稳定的重要手段。目前,茶叶拼配通常采用的方法是由拼配人员先对各茶叶样品进行外观和内质审评,再根据经验和审评结果,试拼小样,然后进行适当调整,最终确定拼配方案,因而不同批次拼配结果具有偶然性,无法进行量化、标准化生产。另外,拼配专家的培养过程较为漫长,不利于拼配技术的推广。

莱森小编采用4 种原料进行拼配,依次逐步判别。以不同等级不同唛号的红毛茶为原料,按照一定比例进行拼配,采集拼配样本的高光谱图像,利用连续投影算法筛选特征光谱变量,并基于灰度共生矩阵提取图像的纹理值,融合光谱和纹理特征值建立茶叶拼配比例的定量预测模型,构建拼配比例求解与优化算法。本研究将为茶叶拼配工艺提供一种品质定量评估的新方法,研究结果有利于提高拼配工艺的自动化、智能化水平,推进茶叶生产标准化。

1、不同样品的光谱差异

本实验采集908~1735 nm波长范围的近红外光谱数据,选择图像中间100×100像素范围为感兴趣区域(ROI),提取ROI所有像素的光谱值,并计算出其平均值,作为这个样本的光谱值。化学含量以及物理特征的不同,样本对特定的波长有着不同的反射率,通过分析光谱信号的差异实现样本品质信息的定性或者定量检测。原料C和原料D光谱值差异比较明显。

2、图像纹理特征值分析结果

基于灰度共生矩阵的方法来计算茶样图像的纹理,提取5 个特征波长下的纹理特征为特征变量。即对A和B在1107、1187、1307、1435、1655 nm波长处的灰度图像分别提取0°、45°、90°、135°的对比度、同质性、能量和相关性。对C和D在1112、1193、1307、1438、1655 nm波长处的灰度图像分别提取4 个角度的对比度、同质性、能量和相关性。在茶样表面沟纹越深、灰度差越大,则对比度越大,反之越小;若茶样灰度分布均匀、纹理较粗糙,则能量值越大,反之越小;同质性体现目标图像的局部平滑;茶样的灰度共生矩阵值均匀相等时,相关性较大,反之较小。

3、定量预测模型的建立结果

以光谱特征值和纹理特征值融合数据作为LS-SVM模型的输入值时预测结果最好,原料A与原料B拼配样预测集判别率为91.89%,原料C和原料D拼配样预测集判别率为86.13%,茶样P1和茶样P2拼配样预测集判别率为94.5%,其中通过预测茶样P1、P2配比,即可分别得到原料A、B、C、D的配比,可以间接解决4 个原料茶样拼配预测配比的问题。结果表明本研究能实现对拼配茶样配比的量化判别。

4、模型的验证结果

image.png

本实验对以上30 个拼配样本审评,并将原料茶样A、B、C和D作为标准样。由于光谱信息是对内质的反映,所以更偏重于对滋味的评审,并依据GB/T 13738.2—2017《红茶 第2部分:红茶》感官品质要求进行评分,从审评结果可以看出,样本所得分数与组内其他样本分数相差相对较大,与模型验证的结果一致。

讨论

本研究利用高光谱图像技术获取经4 种茶原料按照一定比例拼配出的茶样的光谱图像,通过PCA法提取出5 个特征波长,然后进行光谱数据与图像纹理数据的提取,本实验尝试基于光谱信息和图像信息融合技术结合模式识别,预测拼配茶叶的配比。结果显示,融合光谱和纹理特征值结合LS-SVM模型算法,建立拼配茶叶配比预测模型,判别率最高,达到94.5%,预测结果较好。用模型以外的随机30 个样本进行对模型进行验证,结果其中有4 个样本发生误判,总判别率为86.7%,因采用的原料在品质上接近,对结果有一定的影响。目前,拼配茶叶的配比通过高光谱图像技术结合数学模型可以相对准确地预测出,但是,实际生产中,茶叶拼配原料需要很多种,比较复杂,需要大量的数据对模型进行进一步的训练和优化,从而求解标准茶样中各原料的比例。

好了,以上全部内容就是有关高光谱成像技术可以应用于红茶数字化拼配的介绍,希望可以帮助到大家~对高光谱成像技术有需求的朋友们可以咨询官网客服~


关键词相关链接: 紫外泄漏光谱辐射仪 紫外光谱辐射仪 薄膜测量光纤光谱仪 紫外增强宽带光源 水下辐射剖面光谱仪 水质光谱吸收模块 光辐射安全光谱仪 BTDF双向透射分布函数光谱测量仪 工业集成微型光纤光谱仪 可见红外双向反射光谱测量仪(BRDF) 电致发光量子效率光谱系统 光致发光量子效率光谱系统 水质测量光谱吸收光纤探头 IR孔透射积分球 显微透反射光谱系统 太阳模拟器均匀性和稳定性测试仪 荧光比色皿支架 中红外光谱辐射仪 辐射积分球 BRDF双向反射分布函数光谱测量仪 水质光谱紫外吸收模块 便携式矿物红外光谱仪 水体光谱仪 VCSEL激光LIV光谱功率测试仪 全光谱紫外吸收光谱水质模块 COD水质光谱吸收集成模块 全吸收积分球 厌氧停留吸收光谱 全自动水体表现光谱观测系统 VCSEL激光远场测试 VCSEL激光近场测试 单色积分球均匀光源 紫外吸收微型光谱仪 紫外增强卤灯光源 VCSEL激光测试仪 余弦辐射探头 水面高光谱辐射仪 VCSEL光学测试系统 水色遥感光谱仪 LIV激光功率测试 激光LIV人眼安全测试仪 光谱功率积分球 VCSEL激光安全功率测试仪 定制积分球 量子效率光谱系统 手持式地物光谱仪 VCSEL TOF测试 雾度积分球 紫外老化光谱辐射仪 中红外光源 光谱辐射仪 IR孔透过率光谱测试仪 便携式地物光谱仪 VCSEL激光LIV测试系统 地物光谱仪厂家 显微高光谱成像系统 积分球均匀光源 水质测量光谱仪 高光谱相机 机载成像高光谱 海面高光谱 透反射光谱测试仪 积分球光源系统 地物光谱仪 透射积分球 VCSEL激光测试 光通量测试积分球 多光谱相机 无人机高光谱 超连续白光光源 机载高光谱成像仪 紫外可见近红外光谱辐射仪 手持式LIBS激光诱导击穿光谱仪 COD双光路水质光谱吸收模块 水下光谱仪 无人机高光谱成像仪 水体高光谱辐射计 地物光谱仪价格 LIBS激光诱导击穿光谱系统 辐射测量光纤光谱仪 无人机高光谱成像系统 高低温温度控制器 高光谱成像仪 光谱反射率测量仪 光纤光谱仪 光纤镜头 反射积分球 成像光谱仪 激光波长测量光纤光谱仪 水质光谱传感器 激光功率积分球 便携式高光谱相机 积分球 FieldSpec 4 HR NG 蓝菲光学积分球 积分球生产厂家 LED积分球 光谱辐照度仪 便携式光谱辐射计 拉曼测量光纤光谱仪 HR-1024i 颜色测量光纤光谱仪 便携式光谱辐射仪 handheld 2 COD、叶绿素、总氮、总磷等多参数水质分析仪 光纤光源 氘卤组合光源 抗紫外光纤 漫反射标准板 LIBS headwall高光谱成像 国产地物光谱仪 便携式太阳光谱反射仪 野外地物光谱仪 角分辨率光谱系统 太阳光谱反射比 高光谱成像仪价格 地物波谱仪
Copyright © 2020 All Rights Reserved 莱森光学(深圳) 有限公司·版权所有 备案号:粤ICP备18141551号-1