服务热线:
86-0755-23229824
您当前所在位置: 首页>>应用案例>>能源环保
高光谱遥感技术及其水利应用进展2.0

image.png

0  

上周我们说到了国内外高光谱遥感技术与发展、在水生态研究中的应用有水华监测、藻类群落与水生植物的监测、水华与水草的识别等,以及高光谱遥感技术在水利研究应用中的发展方向。本周让我们继续再细谈高光谱遥感在水环境、水灾害、水资源研究中的应用,还有高光谱遥感技术在水利研究应用中的优势和问题

1高光谱遥感在水环境研究中的应用

人类改变生存环境的同时诱发了一系列水环境问题,如水质恶化、水环境质量差以及城市黑臭水体增多等,近年来,水环境污染的防治逐渐成为水利部和流域机构的重要工作之一。水质参数的遥感反演,本质上是一个参数估计的问题,即:将光谱曲线的变化通过经验模型或分析模型与水质参数情况联系起来,因此光谱曲线变化特征的获取成为水质参数反演精度的关键。宽波段的多光谱遥感是水环境遥感的主要数据,但其难以精确获取水体的光谱信息。高光谱遥感的出现为内陆水体水环境监测提供了新的契机,它可以更精准地获取各种常见水质参数的光谱特征,对于叶绿素a、悬浮物等具有明显光谱的水质参数反演效果较好,并以此间接反演透明度、浊度、藻类生物量、总氮总磷以及化学需氧量等其他水环境要素。

image.png

5 太湖OHS数据水华水草提取结果

1.1 反演叶绿素a浓度

富营养化程度是衡量湖泊生态治理的指标,藻类的大量繁殖是造成湖泊富营养化的主要原因,叶绿素a在藻类中占有的比例较为稳定,因此叶绿素a浓度对于调查湖泊的富营养化程度具有重要意义。叶绿素a的吸收系数光谱特征表现为2个吸收峰,通常位于440nm和675nm附近,因675nm处受其他水体要素影响较小,因此常用675nm附近的特征光谱反演叶绿素a浓度。目前,高光谱遥感在叶绿素a的反演中取得了诸多进展。

从反演模型上来看,国内外学者大多使用半经验模型对叶绿素a进行反演,例如一阶微分模型,波段比值模型,三波段模型等。早期有国外学者利用AVIRIS数据进行过叶绿素a的反演效果验证,比如以荷兰的艾瑟尔湖为研究区,利用AVIRIS数据设计了矩阵反演模型,提出了从水下辐照提取了叶绿素浓度的方法,在当时取得了不错的效果,随着不同的高精度模型被提出以及更优质的高光谱数据源的出现,该模型现在运用较少。还有以700nm附近处的反射峰波长为光谱特征参量建立单波段模型反演保加利亚湖泊的叶绿素a,模型拟合度高达0.93。有的运用波段比值模型,基于Hyperion高光谱影像反演了南四湖叶绿素a浓度的分布,与实测情况较为吻合。韦安娜等以鄱阳湖为例,基于高分5号数据,通过穷举法建立了叶绿素a浓度三波段反演模型,反演精度较好。李俊生等以梅梁湾为研究区,通过半经验模型,基于高光谱影像反演了太湖梅梁湾的叶绿素浓度分布图,并取得了较好的结果,指出了CHRIS高光谱影像数据在内陆水质监测中具有巨大潜力。

分析模型涉及水体辐射传输方程,参数较多,整体建模难度较大,但其反演精度一般高于半经验模型。结合实测水体固有光学量,通过构建物理分析模型对水色参数进行估算,并与半经验模型做出对比,指出分析模型的精度更高。潘邦龙等基于HJ-1A星的高光谱数据与实测光谱数据,构建了基于空间八邻域与遗传算法的叶绿素a反演模型,获得较高的反演精度,指出高光谱空谱联合遥感反演的可行性。

高光谱遥感的发展为分析模型的发展提供了基础,以往的多光谱遥感难以得到模型方程中部分参数的精确值,需引入经验公式代替,而高光谱遥感波段数多达数百个,使得原先需要用经验方法近似估测的参数可以直接被计算,除此之外,利用高光谱遥感数据可提取反演对象的特征波段,以此结合反演参数的生物、化学属性进行分析,进而使的模型的物理意义更加明确,易于分析误差来源。

从数据源上来看,许多高光谱遥感数据均已被用于反演叶绿素a浓度,得到了较好的反演结果,机载数据作为补充也在国内一些湖泊与水库的叶绿素a反演取得了运用。以MarkTwain湖为例,将机载高光谱数据与实测数据通过偏最小二乘法建立回归关系,对叶绿素a,悬浮物等参数的检测精度均达到0.7以上。潘梅娥等太湖为研究区,基于HJ-1的HSI高光谱数据,通过建立了混合光谱分解模型反演叶绿素a浓度,该方法一定程度上消除了混合像元干扰,取得了较高的反演精度。洪韬利用珠海一号高光谱数据与地物光谱仪ASD测量的水体反射率,建立了珠海一号高光谱卫星的反射率值与实测叶绿素a浓度之间的关系,对洞庭湖的叶绿素a浓度进行了反演并得到其空间分布(图6)。

image.png

6 OHS反演洞庭湖Chl-a浓度分布

高光谱遥感反演叶绿素a浓度的研究在逐渐增加,但星载高光谱技术较难得到具有高空间分辨率的影像,空间维度上信息获取不足,而机载高光谱遥感具有高空间、高时间分辨率的优势,受到了越来越多遥感水质监测工作人员的青睐。

1.2 测量水体中悬浮物浓度

水中的无机物、有机物、泥沙、黏土、微生物等悬浮物沉积后易厌氧发酵,提高水域的浑浊度,进一步恶化了水质。内陆水体光学特性比较复杂,在高悬浮物浓度的浑浊水体中,一些组分会削弱藻类植物反射率的光谱特征,不同的悬浮物成分、浓度以及粒径分布对水体反射率波谱特征造成的影响也不同,以上因素给遥感监测水生态,水环境的效果造成了负面影响。

悬浮物的光谱特征较宽,利用多光谱遥感数据也可以获得较高的反演精度。Richard基于MODIS的1波段(620~670nm)数据,通过半经验模型反演了北墨西哥湾的悬浮物浓度,结果精度较高。但多光谱方法也存在一定的局限性,祝令亚等,以太湖为研究区域,基于MODIS数据通过经验方法构建反演悬浮物反演模型,结论指出该模型在太湖的不同湖区适用性不同。由此可见以往的多光谱遥感反演悬浮物难以普遍获取较高的精度。

image.png

水中的无机物、有机物、泥沙、黏土、微生物等悬浮物

近年来高光谱遥感的发展为提高悬浮物浓度的监测精度做出一定贡献,由更加精细的光谱特征曲线分析得知,悬浮物的光谱特征在700~850nm较为明显,在700~850nm存在着氧气吸收通道(760nm)和2个水汽吸收通道(720nm,820nm),这些通道会给反演造成误差。高光谱遥感的优势在于有多个波段可以选择,从而避免了以上3个通道所造成的误差影响。同时,高光谱遥感波段数较多,为模型的构建提供了较多的选择,往往可以找到反演的最佳波段,从而进一步提高了悬浮物的反演精度。

余哲修等以滇池为研究区,构建了基于倒数变换的多元逐步回归模型,基于HJ-1A星的影像反演了悬浮物浓度,结果如图7所示,并通过克里格插值法对采集水样进行了悬浮物浓度的空间插值分析,以验证HSI影像反演的精度,通过验证指出反演精度较好。殷子瑶等基于珠海一号高光谱卫星数据,以684nm与540nm波段处的反射率构建比值模型反演了于桥水库的悬浮物浓度,反演结果精度较高,模型相对误差为8.6%。KennethA等利用明尼苏达州主要河流的机载高光谱数据影像,以水体固有光学量和光谱数据计算得到的表观光学量建立分析模型,反演了河水的悬浮物浓度,指出700nm处是该研究区测量悬浮物浓度的最佳波段,模型拟合度达到了0.77~0.93。张兵以太湖为研究区,通过生物光学模型对悬浮物等参数进行反演,并以航空高光谱遥感器WHI和航天高光谱遥CHRIS获取的图像对反演方法进行了检验,综合评价了不同平台的高光谱遥感研究方法的优劣。

image.png

7 滇池悬浮物浓度反演结果

1.3 测量泥沙含量

传统的泥沙含量测量方法取样工作量大,监测覆盖面窄,时效性差。早期人们主要利用Landsat产品与国产高分卫星产品进行泥沙含量的反演,而随着高光谱遥感技术的发展和光谱仪技术的成熟,凭借高光谱数据光谱丰富的优势,进一步深入了对水色、浊度以及透明度的研究,进而提高了泥沙含量测量的精度。

杨光源等,利用HJ-1A星获得的HSI高光谱数据产品,以北海市为研究区,分析了水体悬浮泥沙的光谱特征,利用单波段模型和多波段模型对研究区河口附近的近岸浅水区进行悬浮泥沙的浓度反演,结果证明单波段的指数模型反演效果较好。万庆余等以黄土高原的几种常见土壤为实验样品介绍了利用高光谱遥感技术分析泥沙含量过高而导致的水污染类型和强度的方法。

image.png

通过遥感悬监测浮物浓度仍存在一些缺陷,在水体泥沙浓度过高的区域,测量深度有限,只能达到水体顶端向下几米的范围。目前国内外对泥沙含量的遥感反演研究很少选择内陆河流作为研究区域,尤其是山区河流,而高光谱遥感精准识别地物的特点为地质情况复杂,水文特征多变的山区河流泥沙研究提供条件,在未来,研究人员可借助高光谱遥感对此类地区开展更多的研究。

2高光谱遥感在水灾害研究中的应用

洪水遥感的目标是迅速且精准地监测洪水淹埋面积、洪水水深以及洪水持续时间等主要特征。现阶段的水体淹没范围多采用多光谱遥感技术或雷达提取来确定,存在着遥感数据波段数目少、波谱不连续、光谱分辨率低等缺陷,对于成分较为复杂的洪水水体识别存在着一定的困难,高光谱遥感可作为多光谱遥感和雷达技术的补充,以其精准的光谱识别能力,可以对水体淹没地物存在的混合光谱做更细致的分析,从而提取更准确的水体淹没范围。

image.png

星载高光谱遥感的发展为水灾害监测提供了新的条件。伴随着搭载了Hyperion传感器的EO-1卫星投入使用,洪水等水灾害响应的时间大大缩减,Hyperion影像具有高光谱分辨率、高空间分辨率的特征,为水体信息的提取提供了更好的条件。王向成等通过对辽东湾地区典型地物的光谱曲线进行测定与分析,基于Hyperion影像数据提出了快速自动提取水体信息的斜率法,实现了快速且准确的进行水体信息的自动提取与分类,为洪水、海啸等灾害提供研究基础。

3高光谱遥感技术在水资源研究的应用

全球变暖和人类改造自然行为致使流域水循环物理过程与转化机制发生改变,原有的水资源评价方法也需改进以更好地满足人们掌握水资源总体状况需要。遥感技术全天候,大面积的监测优势使其在水资源的监测与保护中发挥了重要作用,具体体现在利用遥感监测土壤水、地下水、地表水,估算蒸散发量、降雨量等方面。高光谱遥感在水资源监测中发挥了一定作用,通过高光谱的图像分析,可以提取出更精细水文地质信息,为开发、保护和管理水资源提供参考。

就监测和反演土壤水来说,利用微波遥感、雷达等技术提取土壤水的提取精度已可以满足部分工作需求,不同波段的遥感反演各有优劣,表6给出不同波段遥感反演土壤水的优劣对比。

6 不同波段遥感反演土壤水的优劣对比

image.png

高光谱遥感可作为遥感反演土壤水的数据源补充,其优势体现在可获取连续的光谱曲线,从而更好地捕捉不同季节,不同地区土壤的细微的变化,建立土壤反射率与土壤含水量的关系来实现高精度监测。此外高光谱的混合像元分解技术,可同时获取各个组分的光谱信息和混合比例信息,这对监测植被覆盖区域的土壤水具有重要的意义,一定程度上减小了植被在土壤水监测所带来误差。

ET(蒸腾蒸发量)的估算是制定灌溉计划、水库水损失估算、径流预测的研究依据,是水利行业的重要应用之一。高光谱遥感估算ET研究进行较早,早在2005-2006年国内外许多学者就已使用更详细的高光谱数据结合地表实测数据和大气数据,改善了ET的空间估算方法,但由于数据短缺的限制,这些方法并未取得推广。ET的估算涉及的研究区范围普遍较大,且要求数据的时间分辨率较高,因此目前的高光谱遥感在估算ET方面的应用一直存在着数据量不足的局限。在未来,随着高光谱数据数量的不断积累,覆盖范围的扩大,高光谱遥感有望在ET估算应用中取得更多的应用。

4高光谱遥感技术在水利研究应用中的优势和问题

4.1 高光谱遥感技术在水利研究应用中的优势

高光谱遥感的出现在一定程度上突破了以往水利遥感存在的局限,它能够获取水体中各种物质的光谱特性,大大提升了水体要素的反演精度,除此之外高光谱遥感还能进行水体要素的分类识别,比如不同藻类,藻类和水草之间的识别,不同应用的原理以及体现的高光谱遥感优势如表7所示。

7 高光谱遥感典型应用的原理及优势

image.png

4.2 高光谱遥感技术在水利研究应用中面临的问题

现阶段的高光谱遥感在水利行业的应用正处于发展阶段,从数据上来说,高光谱遥感涉及的数据包含实测光谱数据、机载高光谱数据、星载高光谱数据,前两者需要实测获取,部分星载数据来自商业卫星,其获取也存在一定的限制。整体来看,目前可用的高光谱遥感较为短缺且不易获取。除此之外,其在理论方法及模型构建等方面还未成熟,仍面临着一系列问题。

4.2.1 水体要素半经验反演模型需进一步优化

以往的经验模型仅依靠遥感数据和实测数据的统计关系来建立,存在一定缺陷。高光谱遥感为模型构建提供了更多波段选择,其所获取的水体要素光谱曲线也给人们分析波段的物理意义提供基础,可帮助人们建立精度更高,物理意义更明确的半经验模型。

而半经验模型的构建仍面临着一些问题,其中最主要的问题为波段的选择与波段组合形式。比值、三波段、四波段模型是主要的水体要素半经验反演模型,但高光谱遥感波段数通常为几十个至上百个,现阶段半经验反演模型波段利用效率普遍较低。研究人员应该在水体要素光谱特征分析的基础上,合理选取波段或波段组合,提高波段利用效率以构建更完善的高光谱水体要素半经验反演模型。

4.2.2 构建水体要素分析模型困难

分析模型的构建依赖于复杂的水体辐射传输模型,而现存的分析模型几乎都要引入经验公式来确定部分参数,一般将引入经验公式的分析模型称为半分析模型。半分析模型中的各参数均具有明确的物理意义,确立高光谱遥感数据和水体辐射传输方程中各个参数与的关系有助于半分析模型的构建。而水体辐射传输过程受大气影响较大以及水体光学特性影响较大,导致传感器接收的离水辐射信号较弱,目前的水体固有光学量数据积累较少,大气模型精度有待提高,这些因素造成了高光谱遥感半分析模型的构建较为困难。

4.2.3 高光谱遥感影像处理复杂

高光谱遥感影像可近似视为三维数据立方体,数据维度高,数据量大,这意味着其必然存在数据冗余,图像处理困难等问题。目前仅针对高光谱影像开发的影像处理软件较少,因此高光谱遥感影像的高效率处理是一个亟待解决的问题。

机载数据成本高,观测范围有限,大范围的湖泊、水库以及城市河网的水质动态监测必须借助大量遥感影像,因此批量快速地处理高光谱遥感影像对于推广其应用具有重要意义。研究人员可以考虑通过选取有效波段,进行遥感数据降维等方法优化高光谱遥感影像的处理过程,另外在未来还应研发专门处理高光谱遥感影像的工具与软件。

5结论与讨论

高光谱遥感以其数据采集的时效性、地物光谱测量的准确性,外加融合多源数据共同监测的全面性帮助人们客观准确地认知水利要素的光谱成像机理,提高了地物信息精细分类和识别的精度,迄今为止在内陆水体监测、典型水质参数反演、水生态状况调查等方面展开了应用并取得了一系列成果。

近年来成像技术不断突破,成像仪的光谱分辨率已然达到纳米级,波段数达到数百个,高光谱遥感的光谱分辨率将更加精细。大面阵高分辨率探测器技术不断提高,改善了影像的空间分辨率。卫星组网技术的发展缩短了卫星重访周期,高光谱遥感数据的时间分辨率也将大幅度提高。这一系列的改变促使高光谱遥感朝着定量化的方向发展,与此同时越来越多载有高光谱成像仪的卫星成功发射丰富了高光谱遥感的数据源,更多种类的高光谱数据将会被发掘并投入使用,不断扩大高光谱遥感技术在水利行业的应用范围。

高光谱遥感数据短缺与高光谱影像信息提取困难是当前高光谱遥感所面临的主要问题,面向新时期水利行业的应用需求,需要聚焦高光谱遥感新数据、新载荷,开展水利遥感与人工智能交叉学科之间的新方法、新理论以及新思路的研发,不断改善高光谱遥感存在的缺陷。在未来,高光谱遥感将蓬勃发展,为破解四水问题和新时期水利行业服务提供更先进的技术支撑。


推荐  

便携式地物光谱仪iSpecField-NIR/WNIR

专门用于野外遥感测量、土壤环境、矿物地质勘探等领域的最新明星产品,由于其操作灵活、便携方便、光谱测试速度快、光谱数据准确是一款真正意义上便携式地物光谱仪。

image.png

无人机机载高光谱成像系统 iSpecHyper-VM100

一款基于小型多旋翼无人机机载高光谱成像系统,该系统由高光谱成像相机、稳定云台、机载控制与数据采集模块、机载供电模块等部分组成。无人机机载高光谱成像系统采用了独有内置扫描系统和增稳系统,成功克服了小型无人机系统搭载推扫式高光谱相机时,由于无人机系统的震动造成的成像质量差的问题,同时具有高光谱分辨率和优异的成像性能。

image.png

便携式高光谱成像系统 iSpecHyper-VS1000

专门用于公安刑侦、物证鉴定、医学医疗、精准农业、矿物地质勘探等领域的最新产品,主要优势具有体积小、帧率高、高光谱分辨率高、高像质等性价比特点采用了透射光栅内推扫原理高光谱成像,系统集成高性能数据采集与分析处理系统,高速USB3.0接口传输,全靶面高成像质量光学设计,物镜接口为标准C-Mount,可根据用户需求更换物镜。

image.png


Copyright © 2020 All Rights Reserved 莱森光学(深圳) 有限公司·版权所有 备案号:粤ICP备18141551号-1