电话:86-0755-23229824
手机:18948346937 / 13510373651
邮箱:sales@lisenoptics.com
地址:深圳市宝安区沙井街道后亭茅洲山工业园工业大厦全至科技创新园科创大厦11层C
微信:
微信客服号:
抖音官方号:
红富士苹果叶片全钾含量高光谱预测研究
一、高光谱遥感技术理论
近年来快速发展的高光谱遥感技术已经具备了高时效、光谱波段多、光谱分辨率高等优势。与一般遥感技术相比,高光谱遥感技术的成像光谱仪可以分离成几十甚至数百个很窄的波段来接收信息,每个波段宽度小于10nm,所以波段排在一起能形成一条连续的完整的光谱曲线,光谱的覆盖范围从可见光到热红外的全部电磁辐射波普范围。而且利用光谱技术对植物、矿物中的化学元素含量的估测已经得到了广泛应用。钾能调节细胞的渗透压,调节植物生长和经济用水,增强植物的抗不良因素(旱、寒、病害、盐碱、倒伏)的能力,钾还可以改善农产品品质。因此对叶片中钾含量的估测研究对实际应用具有重要意义。由于高光谱对植物中水分含量,叶绿素等含量极其敏感,故叶片中钾的含量的变化必定会对反射光谱信息产生影响,可根据叶片的光谱信息来估测叶片中钾的含量。
1.1 理论基础
1.2 实验材料与方法
1、样品采集
供试苹果品种为处于盛果期的红富士,在秋梢停止生长期进行样品采集,依据研究区土地利用现状图和果园分布布设采样点。选取试验区3个镇的6个果园86棵苹果树为采样对象,随机取样,并尽量涵盖不同树势的叶片。每棵苹果树按东、西、南、北4个方位,在冠层外围各取1-2片充分展开、无损、无病虫害的健康功能叶片。将采集的叶片迅速装入保鲜袋、封口、编号,放盛有冰块的保鲜箱中,尽快带回实验室。
光谱测定
光谱测定采用地物光谱仪,波段值为350~2500nm,其中350~1000nm光谱采样间隔为1.4nm,光谱分辨率为3nm;1000~2500nm 光谱采样间隔为2nm,光谱分辨率为10nm。在一个能控制光照条件的暗室内进行光谱测定。测定前,对测定光谱的叶片,用脱脂棉擦拭干净。测定时,叶片单层平整置于反射率近似为零的黑色橡胶上,光谱仪视场角为25°,探头垂直向下正对待测叶片中部,距样品表面距离0.10 m;光源用光谱仪自带的50W 卤化灯,光源距样品表面距离0.50m,方位角60°。为消除外界干扰以保证精度,每片叶观测记录10个采样光谱,以其平均值作为该叶片的光谱反射值。测定过程中,及时进行标准白板校正。
钾素含量测定
数据处理
将测得的苹果叶片反射光谱数据,利用光谱处理软件进行处理,并通过EXCEL和SPSS软件统计分析和绘图等,进行进一步的分析。对86个样品光谱反射率求均值,得到苹果叶高光谱随波长变化曲线,分析其光谱特征。为了减小光照强度差异、背景光谱以及一起噪声对目标光谱特征的影响,我们对光谱反射率 R 进行了变换。具体变换形式如下:
①光谱的对数;
②光谱对数的一阶导数;
③光谱的倒数;
④光谱倒数的一阶导数;
⑤二阶微分光谱;
⑥光谱的一阶微分;
⑦光谱的一阶导数;
⑧钾含量与原始光谱;
并通过相关分析确定敏感波段,利用敏感波段构建特征光谱参数,建立预测模型。为评价预测值与实测值的拟合效果,选择决定系数R2 进行评价。
模型的建立,优选和检验
首先,对86个苹果叶片原始光谱反射率及8种光谱变换数据与钾素含量分别进行相关分析,确定与苹果叶片钾含量相关性极显著的光谱形式;其次,用逐步回归分析方法筛选出敏感波长与光谱参数;用光谱参数建立苹果叶片钾含量估测模型;最后,对模型进行检验。在86个样本数据中,随即选取30个数据用来建立估测模型,其余31个则用于模型的检验。用决定系数对估测值与实测值之间的拟合结果进行综合研究评定,以检验模型的稳定性和适用性。
1.3 结果与分析
对苹果叶片原始光谱反射率及其8种变换数据与钾素含量进行了相关分析。结果显示,苹果叶片钾素含量与原始光谱反射率、对数、二阶微分光谱、光谱的一阶微分相关性较弱,与光谱倒数、光谱倒数的一阶导数、光谱的对数、光谱的对数的一阶导数相关性较强。并且在光谱倒数的一阶导数和光谱对数的一阶导数的相关系数中,能取得明显的极值,绝对值大于0.6,峰(谷)极值分别出现在波长417nm、487nm、973nm、1081nm、381nm、417nm、487nm、928nm、973nm、983nm、1081nm处(图1、图2)。
对苹果叶片钾素含量与相关性较强的光谱变换数据分别进行了逐步回归分析,获取了估测苹果叶片钾素含量的敏感波长。经过多次调试,最后得到光谱对数的一阶导数,光谱倒数的一阶导数,敏感波长分别为928nm、1081nm。然后以敏感波长构建的光谱参数为自变量,分别建立了钾素含量估测模型。
1.4 结论
苹果叶片钾素含量与原始光谱反射率对数的一阶导数的相关性最好,其相关系数绝对值最大的峰(谷)分别是928nm、973nm、983nm、1081nm波长处。通过逐步回归分析方法筛选出的敏感波长为928nm、1081nm;以928nm对数的一阶导数与 1081nm对数的一阶导数为自变量建立的估测模型具有较好的线性趋势,相关系数为 0.7127。经检测样本的检验,其拟合方程的R2为0.5070,总均方根(RMSE)为 0.00046。